Eurostars Project VM-biopsy

Rapid virtual metabolic biopsy for clinical diagnosis (E! 113617)

Meer dan 150 miljoen mensen in Europa lijden aan een vorm van hersenziekten waardoor bij elkaar bijna 800 biljoen euro aan zorg en behandelingskosten nodig zijn. Verkeerde diagnose leidt tot langer ziekenhuisverblijf en meer extra kosten in de zorg. De huidige methode voor diagnostiek in het brain zijn invasief en kunnen niet alle metabole informatie weergeven die nodig zijn om de diagnostiek te verbeteren. Het doel van VM-biopsy is het verbeteren van de diagnostiek, zodanig dat het voldoet aan de klinische eisen, en ht exploreren van nieuwe diagnostische methoden gebaseerd op MRI. Het VM-Biopsy project zal een nieuw product ontwikkelen waarin nieuwe hardware en nieuwe software voor metabole MRI wordt gecombineerd om metabole processen in het brein te kunnen detecteren op een niet invasieve manier met een ongeëvenaarde precisie, een zogenaamde virtuele biopsy. Het eindproduct zal gebruik maken van wisselende magneetvelden die snel geschakeld kunnen worden en van een hoge dichtheid aan ontvangst coils die grenzen van de gevoeligheid van traditionele MRI zullen verleggen, hetgeen zal resulteren in een sterk verhoogde spatiele resolutie van metabole informatie en een kortere scan tijd.

Wavetronica aims to take MRI diagnostics to the next level. With our plug-and-play add-on device, MRIs will no longer only show information about how the body looks, but also how it functions. We will develop the next generation of MRI solutions that will enable every existing MRI scanner to perform non-invasive virtual brain biopsy as a common practice. This will provide necessary information about metabolic processes to improve diagnostics/prognostics of brain-related diseases.

Metabolic information is paramount for diagnosing brain diseases such as cancer, multiple-sclerosis and psychological disorders. In Europe, 179M people have brain diseases costing €798B for treatment per year. Current practices use invasive methods to acquire metabolic information, but this can be life-threatening, costly and dangerous to repeat. We want to make MRI virtual biopsy accessible as a lower cost, non-invasive, and non-radioactive alternative.

The VM-Biopsy solution will be applicable to all MRI devices.

The VM-Biopsy product is a highly innovative breakthrough product.
Our integrated hardware/software solution will offer the first platform that can perform high resolution metabolic images from the entire human brain.
In VM-Biopsy, we offer the first commercial MRI RF head coil with integrated dynamic local magnetic field (“shim”) coils. This will be designed by the consortium, built by Wavetronica, and provided with a production line at Tesla. Existing head coils only constitute of radio frequency (RF) coils that offer:

1. Single-transmission.

2. No control over the static magnetic field which is disturbed due to the inhomogeneities induced by the patient. This is one of the main prohibiting factors for metabolic imaging.
The head coil developed by the VM-biopsy project will have:

1. Multi-transmission for RF homogeneity.
2. Integrated local shim coils for precise magnetic field control for field homogeneity.

The primary purpose of VM-Biopsy is to improve accuracy in brain disease diagnosis/prognosis. In particular, we will be working on several uses-cases (e.g. diagnosis, treatment response, etc.) with specialized clinics that are experts within these diseases. Together we will develop evidence for clinical added value which will boost the commercial potential of the product.
Using higher resolution metabolic information in the treatment process of cancer has direct potential. Conventional methods for acquiring metabolic information are often invasive and do not provide adequate information about the various metabolic processes. Also, state-of-the-art MRI is insufficient for accurate classification and diagnosis of cancer tumours [3]. Metabolic imaging using VM-Biopsy to perform MRI spectroscopic imaging (MRSI) will add great value.

  • Metabolic Imaging with RF Antennas to predict Chemotherapy Efficacy